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Useful identities related to summations

Since it may have been a while since some folks have worked with summations, I just
wanted to provide a reference on them that you may find useful in your future work.
Here are some useful identities and rules related to working with summations. In the
rules below, f'and g are arbitrary real-valued functions.

Pulling a constant out of a summation:
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Eliminating the summation by summing over the elements:
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Z f(C)=(n—-s+ 1)f(C),where C is a constant.
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Combining related summations:
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Changing the bounds on the summation:
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"Reversing" the order of the summation:
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Arithmetic series:
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Arithmetic series involving higher order polynomials:
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More exotic geometric series:
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Taylor expansion of exponential function:
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Binomial coefficient:
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Much more information on binomial coefficients is available in the Ross textbook.

Growth rates of summations
Besides solving a summation explicitly, it is also worthwhile to know some general
growth rates on sums, so you can (tightly) bound a sum if you are trying to prove

something in the big-Oh/Theta world. If you're not familiar with big-Theta (®) notation,
you can think of it like big-Oh notation, but it actually provides a "tight" bound. Namely,
big-Theta means that the function grows no more quickly and no more slowly than the
function specified, up to constant factors, so it's actually more informative than big-Oh.

Here are some useful bounds:
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A few identities related to products

Recall that the mathematical symbol IT represents a product of terms (analogous to X
representing a sum of terms). Below, we give some useful identities related to products.

Definition of factorial:
n

Hi=n!

i=1
Note that 0! = 1 by definition.

Stirling's approximation for n! is given below. This approximation is useful when
computing n! for large values of n (particularly when n > 30).
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Eliminating the product by multiplying over the elements:
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, where C is a constant.

Combining products:
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Turning products into summations (by taking logarithms, assuming f{i) > 0 for all i ):
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Suggestions for computing permutations and combinations
For your problem set solutions it is fine for your answers to include factorials,
exponentials, or combinations; you don't need to calculate those all out to get a single
numeric answer. However, it you'd like to work with those in Microsoft Excel, here are a
few functions you may find useful:
In Microsoft Excel:

FACT (n) computes 7!

n
COMBIN(n, m) computes( )
m

EXP (n) computes ¢"
POWER (n, m) computes n"'

To use functions in Excel, you need to set a cell to equal a function value. For example,

5
to compute 3! * (2) , you would put the following in a cell:

= FACT(3) * COMBIN (5, 2)
| |

Note the equals sign (=) at the beginning of the expression.



A little review of calculus
Since it may have been a while since you did calculus, here are a few rules that you might
find useful.

Product Rule for derivatives:

du-v)=du-v+u-dv

Derivative of exponential function:

d(e") , du

dx dx

Integral of exponential function:
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Derivative of natural logarithm:
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Integral of 1/x:
1
f —dx = In(x)
X

Integration by parts: (everyone's favorite!)
Choose a suitable u and dv to decompose the integral of interest:
fu-dv =u-v—fv-du

Here's the underlying rule that integration by parts is derived from:

fd(u-v)=u-v=fv-du+fu-dv
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